Skip to main content
Master Technical Skills and Business Communication

Online Master of Science in Business Analytics Curriculum

The Online MSBA program from Seattle University is designed to prepare you for the realities of messy data sets and unclear business obstacles. Develop key quantitative skills, including mathematical modeling and database management, and explore basic programming for data manipulation, visualization, and analysis.

At Albers, we know that your success in business analytics requires that you hone your communication and leadership skills alongside your technical capabilities. The Online MSBA will thus also challenge you to master written, oral, and graphic communication so that upon completing the program, you will understand how to excel as an ethical and adaptive leader of business analytics.

Online R and Python Programming Bootcamp

All new students in the Online MSBA program are required to complete a bootcamp in the R and Python programming languages prior to the beginning of their first term. This six-hour bootcamp will be offered online and may be completed before or during your New Online Student Orientation.

Corequisite Course Requirements

Some Online MSBA students may be required to complete some or all the following corequisite courses in order to graduate from the program:

  • Microeconomics (contains calculus)
  • Finance
  • Financial Accounting
  • Marketing

These corequisite courses will be offered online and may be completed at any point during the Online MSBA program. They will be graded on a pass/fail basis, and they will not count toward the credits required to complete the Online MSBA degree.

Students may be eligible to waive some or all of these courses depending on their prior undergraduate coursework or work experience. Contact an Admissions Advisor for more information.

BUAN 5112 Statistics for Business Analytics (3 credits)

This course reviews key statistical concepts and provides a conceptual introduction to regression analysis.

CPSC 5061 Programming I for Business (3 credits)

This introductory-level course uses the Python programming language. Topics include expressions, control logic, data structures, and functions. We will demonstrate usage of several Python data analytics modules. Students will learn how to design programs to solve problems drawn from real-world examples.

BUAN 5280 Law and Ethics for Business Analytics (3 credits)

This course will examine the opportunities and challenges introduced by business analytics through the perspectives of the law and ethics. Rapidly evolving technologies that permit the collection, storage, aggregation, analysis, and use of data create opportunities for financial benefit and the common good, but also create challenges to legal rights such as privacy, equality, and dignity, and to ethical values such as autonomy, trust, and virtue. The course will be framed as a contextual examination of business analytics to facilitate learning about legal and ethical standards for private organizations using data analytics techniques in various stages of the data life cycle. This is a dynamic course which presents a rich basis for student learning and contemplation of central questions for “big data,” including issues related to acquisition and use of data, professional and social responsibility in the application of modern technologies, the efficacy of management by algorithm, and the loss of human control in using artificial intelligence. The following are examples of legal and ethical issues that may be included, subject to time constraints: In law: information privacy law such as U.S. tort law, federal statutory and administrative law, and constitutional protection of civil liberties; European Union data privacy regulation; cyber­intelligence and cybersecurity regulation; contractual liability, specifically with respect to third-party reliance on data analysis; the law of negligence; and agency law. In ethics: adverse effects of data collection on vulnerable populations; transparency and honesty in the cleaning, processing, and visualization of data; introduction of the machine equivalent of implicit bias in feature selection; and responsibilities when using data analysis as a tool to guide human decision-making. Registration restrictions may be bypassed by the department with permission of instructor.

BUAN 5210 Data Wrangling, Visualization, and Communication (3 credits)

This course teaches the essential and practical skills necessary to communicate information about data clearly and effectively through written, oral, and graphical means. Students will learn and practice with advanced visualization tools to effectively communicate. The course will build from the understanding of data to the presentation of the analysis. Data visualization “storytelling" will provide tools to effectively: communicate ideas, summarize, influence, explain, persuade, and provide evidence to an audience. Visualization can convey patterns, meaning, and results extracted from: multivariate, geospatial, textual, temporal, hierarchical, and network data. During the course, students will deliver presentations using these techniques, and they will also learn to critically evaluate other presentations.

CPSC 5062 Programming II for Business (3 credits)

This is an intermediate course in computational problem-solving using Python with a focus on using medium to large datasets to inform business decisions and strategy. Skills developed include information visualization, simulations to model randomness, computational techniques to understand data, and informative statistical techniques. Some exposure to optimization problems and dynamic programming, computational statistics, and machine learning.

ECON 5305 Economics and Business Forecasting (3 credits)

Techniques for applied business forecasting with emphasis on time-series methods. A survey of regression-based and time-series methods, models for stationary and non-stationary time series, estimation of parameters, computations of forecasts and confidence intervals, and evaluation of forecasts.

BUAN 5315 Big Data Tools for Analysis (3 credits)

“Big data” is a term applied to data sets whose size is beyond the ability of commonly used software tools to capture, manage, and process within a tolerable elapsed time. Big data tools have been evolved to the application of analytic techniques to very large, diverse data sets that often include varied data types and streaming data, i.e., parallel computing, MapReduce, NoSQL, etc. This class will discuss big data tools, analysis, and use cases.

BUAN 5260 Mathematical Models for Decision-Making (3 credits)

This course introduces several important modeling approaches for decision­-making problems. The first part of the course focuses on deterministic optimization problems including linear, integer, and possibly dynamic programming. Applications that may be used during the course include: allocation of advertising and sales effort, artificial intelligence models, revenue management, and production and distribution systems planning. The second part of the course addresses decision-making under uncertainty. Topics include: a brief review of probability theory, an introduction to stochastic processes, and Monte Carlo simulation. Illustrations used during this part of the course may be drawn from areas such as consumer behavior (learning, purchase timing, purchase incidence, or brand choice), scheduling of operations, performance of computing systems, and sales forecasting. The emphasis throughout is on understanding the problem, formulating a suitable model, finding a solution, interpreting it, and performing sensitivity analysis. The course seeks to provide an intuition for how different techniques work, along with experience in applying them to real problems and in presenting results and recommendations in a clear and persuasive manner to specialists and non-specialists alike. Students will complete a short, collaborative term project that requires them to recognize, model, and solve a real-world problem using the methods learned in the course.

BUAN 5140 Data Management for Business Analytics I (3 credits)

This course introduces the relational database systems and SQL for analyzing data for business analytics. Specific topics include data definitions, data manipulations, integrity constraints, scripts, procedures/functions, triggers, and file/index designs.

BUAN 5142 Data Management for Business Analytics II (3 credits)

This course is a continuation of BUAN 5140 (Data Management for Business Analytics I). It introduces the management and analysis of structured, semi-structured, and unstructured data for business analytics. Specific topics include distributed database systems, NoSQL, information retrieval, data warehousing, OLAP, and data security.

BUAN 5300 Applied Econometrics (3 credits)

Fundamentals of econometrics and use of econometric techniques in financial and economic research and decision-making. Topics include simple linear regression, residual analysis, multivariate regression, and the generalized linear model. The course will stress computer applications.

CPSC 5068 Artificial Intelligence for Business (3 credits)

This course focuses on basic principles of artificial intelligence and on applications of AI in business settings, such as customer service, sales, and marketing. An introduction to core AI concepts, systems, and applications, such as natural language processing, voice recognition, robotics, vision, and machine learning, is followed by discussions—and in some cases applications—of key enabling technologies. Case studies are introduced to generate business insights and to help determine when investments in AI produce significant returns. Upon conclusion, students should have a broad understanding of several AI enabling technologies, and how they can be used to support business needs.

CPSC 5065 Machine Learning for Business (3 credits)

Fundamental concepts and technologies for developing machine-learning models to solve business problems, and to provide business intelligence by analyzing massive amounts of data to find interesting patterns that can be used to assist decision-making or provide predictions. Emphasis on choosing an appropriate solution technology for a problem, and evaluating and presenting the solution. Topics covered include regression, decision trees and ensemble methods, and neural learning models; unsupervised learning for clustering and dimensionality reduction; and text processing. Students are expected to analyze real-world data in business using data mining software.

CPSC 5066 Machine Learning Lab for Business (3 credits)

Lab to be taken concurrently with CPSC 5065 (Machine Learning for Business). Complements the technical material covered with two group projects.

BUAN 5510 Capstone Project in Business Analytics (6 credits)

The Capstone is an application of data analytics in the planning and execution of a real-life development project for an industry partner. Students will work individually or in small project teams to define and carry out an analytics project from beginning to end. Key steps include: scoping the project, locating an industry partner, formalizing a question, finding data sources, determining the method of analysis, implementing the analytical procedure, and communicating the results to the client. This process will help students integrate what they have learned in multiple courses and apply their expertise to solve a problem for a real-world enterprise. This course is typically taken during the last quarter of the student’s program of study.

Admissions Deadlines

Jul
16

Priority Application Deadline

July 16
Fall 2019 term

Sep
10

Application Deadline

September 10
Fall 2019 term

Sep
23

Next Start

September 23
Fall 2019 term